WU Yuqian Supervised by Prof. Margaret Ip 20151215 Department of Microbiology School of Medicine The Chinese University of Hong Kong

Strategies of Biofilm Disruption

Outline

Brief Introduction to biofilm
D-amino acid treatment
Anti-biofilm peptide
Drugs targeting oscillation

What is biofilm?

- Microorganisms stick on a surface with proteins and polysaccarides
- Antibiotics resistance: 10~1000 times
- Matured biofilm: release planktonic bacteria

D-amino acid treatment

Clin Orthop Relat Res (2015) 473:3951-3961 DOI 10.1007/s11999-015-4465-9		Contents lists available at ScienceDirect	MICROBIAL Pathogenesis
BASIC RESEARCH	ELSEVIER	journal homepage: www.elsevier.com/locate/micpath	
D-amino Acid Inhibits Biofilm but in an Ovine Model Andrew J. Harmata PhD, Yun Ma PhD, Carlos J. Sand Katarzyna J. Zienkiewicz MS, Florent Elefteriou PhD,	n The effects <i>Pseudomon</i> Pengfei She ¹	s of D-Tyrosine combined with amikacin on the biofilms of nas aeruginosa , Lihua Chen ¹ , Hongbo Liu, Yaru Zou, Zhen Luo, Asmaa Koronfel, Yong Wu [*]	CrossMark
Journal of Medical Microbiology (2014), 63, 1369–13	376	World J Microbiol Biotechnol (2012) 28:3067–3074 DOI 10.1007/s11274-012-1116-0	
D-Amino <i>Staphyl</i> infection	o acids i <i>ococcus</i> ns	A synergistic D-tyrosine and tetrakis hydroxymethyl phos sulfate biocide combination for the mitigation of an SRE	phonium 3 biofilm
Biomateria Contents lists avail Bio ELSEVIER journal homepage: www	able at SciVerse materials	URNAL OF BACTERIOLOGY, Oct. 2011, p. 5616-5622 21-9193/11/\$12.00 doi:10.1128/JB.05534-11 pyright © 2011, American Society for Microbiology. All Rights Reserved. Inhibitory Effects of D-Amino Acids on Staphylococcus au Biofilm Development ^V Allon I. Hochbaum, ^{1,2} § Ilana Kolodkin-Gal, ³ § Lucy Foulston, ³ Roberto Kolter	Vol. 193, No. 20 <i>UPEUS</i> r, ⁴
Cell. Mol. Life Sci. (2011) 68:817–831 DOI 10.1007/s00018-010-0571-8 REVIEW	ned in final edi ace. 2010 April	ited form as: 1 30; 328(5978): 627–629. doi:10.1126/science.1188628.	
Emerging knowledge of regu in bacteria Felipe Cava · Hubert Lam · Miguel A. de Per Mothers V. Wolder	mino Aci Kolodkin-Ga	ds Trigger Biofilm Disassembly al ¹ , Diego Romero ² , Shugeng Cao ³ , Jon Clardy ³ , Roberto Ko	olter ² , and

Introduction of D-Amino Acid

Ilana KG, et al. (2010) Science 328(5978).

Effects of D-Amino Acid

- D-tyrosine is most effective on both preventing biofilm formation and disrupting existing biofilm by incorporation into the cell wall
- It also inhibits biofilm formation of *Staphylococcus aureus, Escherichia coli* and *Pseudomonas aeruginosa* biofilm

Antibiofilm peptide

Target of Anti-biofilm Peptide

- Peptide: immunomodulatory peptide IDR (innate defense regulator): 1018 (VRLIVAVRIWRR-NH₂)
- Target: guanosine 5'-di(tri)phosphate 3'-diphosphate
 [(p)ppGpp] (signal activating stringent response as second messenger)
- Principle: inhibition of synthesis of (p)ppGpp and stress response through enzymes RelA and SpoT

Affectivity of Anti-biofilm Peptide

Effects of Anti-biofilm Peptide

- Inhibit growth of biofilm
- Eradicate existing biofilm
- Increase affectivity of disinfectants (e.g. chlorhexidine)

Oscillation: Introduction and Inspiration

中文大學

Introduction of Oscillation

- Biofilm growth has oscillations (pauses growth periodically)
- Biofilm periphery grow → absorb nutrient → biofilm interior starve → (how?) biofilm periphery pause growth → nutrient access biofilm interior → (how?) biofilm periphery grow →→ (oscillation repeats)
- Hypothesis: nutrient (e.g. glutamate) triggers metabolic feedback/ion channel communication
- Note: glutamate –GDH→ ammonium + glutamine

Süel GM, et al. (2015) Nature 523(7562).

Hypothesis 2: Ion channel, the signal?

Süel GM, et al. (2015) Nature 527(7576).

Hypothesis 2: Ion channel, the signal?

- Result 4: existence of channel (yugO) and its gate domain (trkA) [gate opens when glutamate limits, leads to potassium efflux]
- Result 5: removal of trkA domain leads to membrane potential constancy loss

Discussion of Oscillation

- Biocides that lead to death might lead to growth; signals that lead to growth might lead to death
- Oscillations of biofilm growth showed that inhibiting growth of colony periphery might lead to growth of the biofilm interior, vice versa
- To eliminate biofilm growth, metabolic products (e.g. ammonium) could be utilized at the same time with disinfectants (e.g. H₂O₂)
- Drugs targeting potassium channel could be utilized by interfering oscillation and metabolic coordination
- Not only structural similarities between bacterial and human potassium ion channels, but also their possible functional similarities with respect to electrical communication should be noticed

Conclusion

- New strategies have been updated for biofilm growth inhibition and disruption
- New methods could be developed according to these strategies

Thank you!

Q&A Session

Target of Anti-biofilm Peptide

Name	Target	Reference
Cationic antimicrobial peptides	lipopolysaccharides and lipoteichoic acids	Han HM, et al. (2015) Amino Acids
Cinnamic acid derivative ultrashort tetra-peptide	-	Laverty G, et al. (2015) J Pept Sci. 21(10):770-8
Bacteriocins	Membrane permeability	Chopra L, et al. (2015) Sci Rep. 5:13412.
14-Helical β-peptides	-	Raman N, et al. (2015) Pharmaceuticals 8(3)
Coryxin (Asn-Arg-Asn-Gln- Pro-Asn-Ser)	-	Dalili D, et al. (2015) Colloids Surf B Biointerfaces 135
Peptide 1018	(p)ppGpp	de la Fuente-Núñez C, et al. (2015) PLoS One 10(7)
Esculentin-1a(1-21)NH2	Bacterial lipopolysaccharide (LPS)	Di Grazia A, et al. (2015) Amino Acid. 47(12):2505-19

Conclusion

Treatment	Advantage	Disadvantage
D-Amino Acid	Easy to produce, effective	Resistance (e.g. yqrM6)
Anti-biofilm Peptide (Peptide 1018)	Could inhibit growth of biofilm, decrease resistance of disinfectant	Resistance (e.g. overexpression of ReIA/SpoT)
Metabolic product (e.g. ammonium)	Easy to produce, decrease resistance of disinfectants	Should be utilized together with disinfectant
Drugs targeting ion channels	Low resistance	Might need further study

Introduction of Oscillation

Introduction of Oscillation

